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Abstract

Background: The published literature on hematological, clinical, flowcytometric‐
immunophenotyping, and minimal residual disease outcomes of the prognostically

important genetic subtypes of acute lymphoblastic leukemia (ALL) is scarce from

low‐income countries. For newer classifications such as BCR::ABL1‐like ALLs, the

scarcity of patient‐level data is even more pronounced.

Methods: The authors performed comprehensive detection of recurrent gene fu-

sions and BCR::ABL1‐like ALL cases followed by immunophenotypic profiling and

obtained clinical outcome parameters for a large cohort (n = 1021) of patients from

India. This cohort included a significant number of patients with BCR::ABL1‐like ALL

subtype and other genetic subtypes of ALL.

Results: Patients with BCR::ABL1‐positive and BCR::ABL1‐like ALL were significantly

older, had male preponderance, and expressed a higher white blood cell count than

BCR::ABL1‐negative cases (p < .05). Logistic regression modeling of B‐lineage‐ALL

(B‐ALL) subtypes revealed that cluster of differentiation (CD)36 is a strong statis-

tically significant predictive marker of BCR::ABL1‐like ALL (p < .05). Furthermore,

patients with BCR::ABL1‐like ALLs show a significantly higher frequency of CD36

expression compared to BCR::ABL1‐negative ALLs (p < .05). In terms of clinical

symptoms, lymphadenopathy is a strong statistically significant predictive marker in

BCR::ABL1‐like ALLs compared to BCR::ABL1‐negative ALL cases (p < .05). In terms

of treatment outcomes, minimal residual disease (MRD) positivity in BCR::ABL1‐
positive ALL cases were statistically significant (p < .05), and BCR::ABL1‐like ALL

cases had high MRD‐positivity as compared to BCR::ABL1‐negative ALL cases but

did not show statistical significance.

Conclusions: The findings evince the use of novel therapies and personalized

treatment regimens to improve the overall survival of the newer incorporated
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entities in B‐ALLs. This is the first report characterizing the hematological, clinical,

flowcytometric‐immunophenotyping, and minimal residual disease outcomes of the

prognostically significant subtypes of ALLs in patients from India.

Plain Language Summary

� Characterizing the hematological, clinical, flowcytometric‐immunophenotyping,

and minimal residual disease outcomes of the prognostically significant subtypes

(n = 1021) of acute lymphoblastic leukemia (ALLs) in patients from India.

� We have made two independent logistic regression models of cluster of differ-

entiation (CD) markers and clinical symptoms to differentiate prognostically

significant subtypes of ALLs.

� Logistic regression analysis of CD markers revealed CD36 as a strong predictor in

BCR::ABL1‐like ALL cases compared to BCR::ABL1‐negative ALL cases.

� Logistic regression analysis of clinical symptoms revealed lymphadenopathy

significantly predicts BCR::ABL1‐like ALLs (p < .05).

� In terms of treatment outcomes, BCR::ABL1‐positive ALL had statistically signifi-

cant minimal residual disease (MRD) (p < .05), and BCR::ABL1‐like ALL cases had

high MRD‐positivity but did not show statistical significance as compared to BCR::

ABL1‐negative ALLs.

K E YWORD S

B‐acute lymphoblastic leukemia (B‐ALL), cluster of differentiation (CD) markers,
flowcytometric‐immunophenotyping (FCM‐IP), high‐risk ALLs, PGIMER in‐house rapid and
cost‐effective classifier (PHi‐RACE), recurrent fusion transcripts (RGFs)

INTRODUCTION

Acute lymphoblastic leukemia (ALL), one of the most common pedi-

atric cancers, predominantly occurs in the pediatric age group of 2–

10 years.1–3 ALL remains the leading cause of morbidity in children

and has worse clinical outcomes in adults.4,5 The genetic landscape of

ALL is highly heterogeneous and characterized by significant recur-

rent cytogenetic and/or molecular genetic abnormalities including

BCR::ABL1, ETV6::RUNX1, TCF3::PBX1 and KMT2A‐AFF1, DUX4‐rear-

rangement (~r), MEF2D9‐r, ZNF384‐r, PAX‐r, BCR::ABL1‐like, and

genetic alterations in lymphoid transcription factors, most commonly

IKZF1 (IKAROS family zinc finger 1).1 These structural and/or mo-

lecular variations, sequence mutations, and copy number variations

disrupt the maturation of the lymphoid lineage, leading to uncon-

trolled cell growth and ultimately leading to leukemogenesis.2,4–7

Recently, several new genetic entities have been incorporated, as

outlined above, into the biology of ALLs from high‐income nations.1

Detecting the high‐risk genetic subtypes of ALL is still a pending task

for low‐income countries, especially BCR::ABL1‐like ALL cases.8,9

BCR::ABL1‐like ALL is considered an entity in the 2022 World Health

Organization classification of hematolymphoid neoplasms.10,11 This

entity is specified by a similar gene expression profile to that of

Philadelphia (Ph)‐positive ALL cases, without expressing BCR::ABL1

fusion transcripts originating from Ph‐chromosome and additionally

associated with poorer clinical outcomes.5–9,12–37

An extensive literature search revealed the scarcity of published

data on hematological, flowcytometric‐immunophenotypic profile

(FCM‐IP), clinical characterization, and minimal residual disease

(MRD) outcomes of prognostically important subtypes from low‐
income countries. In our previous studies, we have reported the

incidence of 18.66% (184 of 986) BCR::ABL1‐positive ALLs, 5.17% (51

of 986) ETV6::RUNX1‐positive ALLs, 3.95% (39 of 986) TCF3::PBX1‐
positive ALLs, 1.21% (12 of 986) KMT2A‐AFF1‐positive ALLs, and

26.67% BCR::ABL1‐like ALL cases of patients from India.8,38 In this

study, we characterized the hematological, immunophenotypic pro-

file associated with aberrant myeloid markers, clinical characteriza-

tion, and MRD outcomes of prognostically important subtypes of B‐
ALLs in patients from India (n = 1021). Evaluating hematological,

immunophenotypic profile, clinical description, and MRD outcomes

helps make alternate curative decisions in treating ALLs, especially

for newly incorporated genetic subtypes.

MATERIALS AND METHODS

Patient selection and sample collection

The Department of Hematology of North Indian Tertiary Care

Center, Postgraduate Institute of Medical Education and Research

(PGIMER), Chandigarh, India, has provided the necessary
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infrastructure and facilities for this research study. Institutional

ethics committee (IEC) established by PGIMER approved this

research study (vide no. INT/IEC/2017/191; 10.23.2017). Written

consent was attained from all the participants, and the study was

performed as per the Declaration of Helsinki (1975) (revised 2008).

The study cohort included 1021 B‐ALLs classified according to

National Cancer Institute classification, as described in the

Consolidated Standards of Reporting Trials Diagram (Figure 1). We

have studied the clinical, hematological, FCM‐IP, and MRD out-

comes of prognostic significant genetic subtypes of B‐ALL

cases (n = 1021) including t(9:22)(BCR::ABL1), t(1:19)(TCF3::PBX1),

t(12:21) (ETV6::RUNX1) and t(4:11)(KMT2A::AFF1), and BCR::ABL1‐
like ALL cases. The routine diagnostic workup of B‐ALL patients in

the Department of Hematology has been described in the Supple-

mentary Methods.

FCM‐IP

After morphological examination, peripheral blood/bone marrow

samples were prepared to diagnose B‐ALL cases using FACS‐Navios

(Beckman Coulter, California) and FACS‐Canto II (BD Biosciences),

and the data was acquired using Kaluza 2.1 and FACS Diva software

6.1.2.38,39 The standardized primary panel of antibodies for diag-

nosing B‐ALL cases is shown in Table S1. FCM‐IP method has been

described in the Supplementary Methods.

Recurrent gene fusion detection in B‐ALLs

The total RNA was extracted from newly diagnosed B‐ALL cases

using Qiagen Mini‐amp Blood RNA kit (Qiagen, Hilden, Germany).

Furthermore, quantified RNA samples were subjected to iScript

complementary DNA (cDNA) Synthesis Kit (Bio‐Rad, Hercules, Cali-

fornia) for cDNA synthesis. Last, cDNA (1 μg) was subjected to

standardized multiplex reverse transcriptase–polymerase chain re-

action (RT‐PCR) to identify four recurrent gene fusions (RGFs) ac-

cording to Pakakasama et al.40,41 The primers of four RGFs are

shown in Table S2 and the positive controls were provided by the

Christian Medical College (Vellore, India) on request.

Identification of BCR::ABL1‐like ALL cases

In recently published studies, we built a PGIMER in‐house rapid and

cost‐effective classifier (PHi‐RACE):PGIMER in‐house rapid and cost‐
effective classifier using logistic predictive statistical computing for

quick identification of BCR::ABL1‐like ALL cases at diagnosis. With the

PHi‐RACE classifier, we have reported an incidence of 26.67% (143

of 536) BCR::ABL1‐like ALLs from patients of Indian ethnicity.8 The

PHi‐RACE classifier has been further described in the Supplementary

Methods.

Logistic regression of CD markers and clinical
symptoms across ALL subtypes

We have performed logistic regression on CD markers and clinical

symptoms across ALL genetic subtypes using the glm function in R

statistical software.42,43 The logistic regression modeling of CD

markers and clinical symptoms is further described in the Supple-

mentary Methods.

MRD analysis

For performing the MRD analysis of adult and pediatric B‐ALLs

treated with modified Berlin‐Frankfurt‐Munich and Indian Child-

hood Collaborative Leukemia Group protocol at the end of induction

therapy (EOI) (day 28),44,45 we used standardized lyse‐stain‐wash

method for MRD sample preparation.46 MRD assay was standard-

ized for a lower limit of quantification of 10–3 and considered positive

at a threshold of >0.01% as per the institutional treatment proto-

col.47,48 The MRD method is described in the Supplementary Methods.

Statistical analysis

Descriptive analysis has been presented as mean, median, and range.

The Gaussian distribution of data was checked using Shapiro–Wilk

test. For normally distributed data sets, Student t‐test was used to

compare two groups, whereas Mann‐Whitney U test was performed

for non‐normally distributed data. Chi‐square was used to compare

categorical data. ANOVA was used for more than two‐group com-

parisons. Binary logistic regression analysis of CD markers and clin-

ical symptoms was performed on various genetic subtypes of ALLs

using the glm function of R. All statistical tests we used in this study

were two‐tailed, with a significance level of p < .05 (represented as

*p ≤ .05, **p ≤ .01, ***p ≤ .001, ****p ≤ .0001 in Table 1). All the

statistical analyses were performed using licensed GraphPad Prism

(v9.2) and R (v4.1).

RESULTS

Patient characteristics

We studied 1021 newly diagnosed B‐ALLs from the period of January

3, 2017 to January 6, 2022. The overall sex ratio was 1:0.61, with

635 males and 386 females. The median age of B‐ALLs was 11 (range,

1–85 years). The hematological features, including complete blood

count, showed median hemoglobin was 7.9 g/dL (range, 2.4–15.5 g/

dL), median white blood cell count (WBC) was 12.2 (range, 0.3–

576� 109/L), median platelet count was 28 (range, 1.7–703� 109/L),

and blasts count was 90% (range, 20%–99%) in B‐ALLs. The clin-

icobiological features of identified different genetic subtypes of B‐
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ALLs, including BCR::ABL1‐negative ALLs (n = 592), BCR::ABL1‐posi-

tive ALLs (n = 184), ETV6::RUNX1 (n = 51), TCF3::PBX1 (n = 39),

KM2TA::AFF1 (n = 12),38 and BCR::ABL1‐like ALLs (n = 143)8 of ALLs

are shown in Table 1 and Figure S1.

Flowcytometric‐immunophenotype of various genetic
subtypes of ALLs

The incidence of B‐lineage surface and cytoplasmic CD markers

expression including CD19, CD10, CD20, CD34, CD38, HLA‐DR, TDT,

CD58, CD36, CD123, CD81, CD86, cytoCD22, cytoCD79a, and CD45

was determined across various genetic subtypes of ALLs, as shown in

Table S3 and Figure 2. We analyzed the frequency of expression of

myeloid‐associated markers (e.g., CD13, CD33, and CD117) across

various genetic subtypes of ALLs. BCR::ABL1‐positive and ETV6::

RUNX1‐positive ALL cases demonstrated a significantly higher fre-

quency of CD13 and CD33 expression compared to other different

genetic subtypes of ALL (p < .05). CD13 and CD33 expressing BCR::

ABL1‐positive and ETV6::RUNX1‐positive ALL cases had male pre-

ponderance and significantly higher WBC compared with other ge-

netic subtypes of ALLs. The expression of CD33 was higher in BCR::

ABL1‐like ALL cases but with no statistical significance compared to

BCR::ABL1‐negative ALL cases. In KM2TA::AFF1, we did not observe

the expression of myeloid‐associated markers. The comparison of

myeloid‐associated markers across various genetic subtypes of ALLs is

shown in Table S4 and Figure 3. A representative BCR::ABL1‐like ALL

case shows the aberrant expression of myeloid‐associated markers, as

shown in Figure S2.

Logistic regression model of clinical symptoms in six
genetic subtypes of ALLs

The frequency of clinical symptoms manifested across various ge-

netic subtypes of ALLs at diagnosis, including fever, bleeding, bony

F I GUR E 1 The study cohort included 1021 B‐lineage acute lymphoblastic leukemia (B‐ALL) cases diagnosed (January 3, 2017–January 6,
2022) according to flowcytometric‐immunophenotyping. The B‐ALL cases have been classified according to National Cancer Institute

classification. Age 1–9 years, WBC count <50,000 per cubic millimeter at diagnosis = standard risk (SR) B‐ALL cases (n = 471); age 10–
15 years, WBC count >50,000 per cubic millimeter at diagnosis = high risk (HR) B‐ALL cases (n = 144); age 16–39 years = adolescents and
young adults (AYA) (n = 276); and age >40 years = adults (n = 130).
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tenderness, bone pains, ecchymosis, progressive pallor, lymphade-

nopathy, and organomegaly, including hepatomegaly and spleno-

megaly, is shown in Figure S3 and Table S5. Logistic regression

analysis was performed in B‐ALL subtypes (including BCR::ABL1‐
negative ALLs, BCR::ABL1‐positive ALLs, BCR::ABL1‐like ALLs, ETV6::

RUNX1‐positive ALLs, KMT2A:AFF1‐positive ALLs, and TCF3::PBX1‐
positive ALLs) to evaluate the significant clinical symptom as pre-

dictor variables across genetic subtypes of B‐ALLs. Likelihood ratio

tests were significant for each of the six logistic regression models,

indicating the models fit significantly better than empty models with

just an intercept (i.e., a null model). However, modeling of the

KMT2A::AFF1‐positive ALL patients revealed very large standard

errors for the coefficients, together with p values of 1, indicating

that this subtype is not amenable to logistic regression employing

clinical parameters as predictor variables and is removed from the

summary tables and the figures for this analysis. Logistic regression

analysis of the B‐ALL subtypes revealed that lymphadenopathy

shows a positive correlation in BCR::ABL1‐like ALLs and ETV6::

RUNX1‐positive ALL cases and is negatively correlated in BCR::ABL1‐
negative ALL cases (p < .05). Fever shows a positive correlation in

ETV6::RUNX1 patients and is negatively correlated in BCR::ABL1‐
positive ALL cases (p < .05). Pallor shows a positive correlation in

BCR::ABL1‐like ALL cases and is negatively correlated in BCR::ABL1‐
negative ALLs (p < .05). Splenomegaly shows a negative correlation

in ETV6::RUNX1‐positive ALL cases (p < .05). We did not find any

clinical symptoms that were statistically significant in TCF3::PBX1‐
positive ALL cases. The regression coefficients and measures of

fit for the logistic regression models of clinical symptoms man-

ifested across genetic subtypes of ALLs are shown in Table S6 and

Figure 4.

Logistic regression model of CD markers in six genetic
subtypes of ALLs

Logistic regression analysis of the B‐ALL subtypes revealed that

CD20, CD33, CD34, and TDT are statistically significant predictive

markers of BCR::ABL1‐positive ALLs, whereas CD38 and CD117

show a negative correlation with this subtype. Similarly, CD33,

CD38, CD79a, CD117, CD123, and HLA‐DR are statistically

F I GUR E 2 The % positivity of cluster of differentiation marker expression, including surface and cytoplasmic B‐lineage markers in B‐
lineage acute lymphoblastic leukemias (B‐ALLs), BCR::ABL1‐negative ALL cases, BCR::ABL1‐positive ALL cases, ETV6::RUNX1‐positive ALL
cases, TCF3::PBX1‐positive ALL cases, and BCR::ABL1‐like ALL genetic subtypes of ALLs.
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F I GUR E 3 The expression of myeloid‐associated markers in B‐lineage acute lymphoblastic leukemias (B‐ALLs), BCR::ABL1‐negative ALL
cases, BCR::ABL1‐positive ALL cases, ETV6::RUNX1‐positive ALL cases, TCF3::PBX1‐positive ALL cases, and BCR::ABL1‐like ALL genetic subtypes

of ALLs.

F I GUR E 4 Forest plot of logistic regression coefficients obtained from logistic regression modeling using clinical parameters as predictor
variables for the indicated acute lymphoblastic leukemia subtypes. The regression coefficients are plotted after exponential transformation of
estimates obtained for predictor variables that showed significance (p < .05) in at least one of the plotted models.
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significant positive predictors of BCR::ABL1‐negative ALL subtype,

whereas CD36, CD81, and CD86 are also negatively correlated with

a positive diagnosis for this ALL subtype. For BCR::ABL1‐like ALLs,

CD36 expression is a strong predictor, whereas CD123, TDT, and

HLA‐DR expression significantly decreases the odds for the pres-

ence of this subtype. For the other ALL subtypes, the presence of

CD13 is a positive predictor of ETV6::RUNX1‐positive ALLs and

CD10 is a strong negative predictor for KMT2A:AFF1‐positive ALLs,

whereas CD20 and CD34 are negative predictors of TCF3::PBX1‐
positive ALL subtype, as shown in Figure S4 and Table S7. Our lo-

gistic regression model shows that the CD36 markers strongly

predict newly incorporated ALL subtypes (BCR::ABL1‐like ALLs). The

logistic regression model of six genetic subtypes of ALLs is shown in

Table S8.

Outcomes of identified patients with BCR::ABL1‐like
ALL signature

MRD (sensitivity of 0.001%) was evaluated using a 10 color/12 pa-

rameters flow cytometry at the EOI (after 4 weeks of treatment). The

MRD data was available in 78.06% (797 of 1021) of B‐ALL cases. The

MRD positivity of 18.04% (85 of 471) in BCR::ABL1‐negative ALLs,

21.36% (25 of 117) in BCR::ABL1‐like ALLs, 22.48% (29 of 129) in

BCR::ABL1‐positive ALLs, 18.91% (7 of 37) ETV6::RUNX1‐positive

ALLs, 12.12% (4 of 33) TCF3::PBX1‐positive ALLs, and 0% (0 of 10)

KM2TA::AFF1‐positive ALLs were compared across genetic subtype

of ALLs, as shown in Table 2 and Figure 5. MRD outcome of BCR::

ABL1‐positive ALL cases shows a statistical significance (p < .05)

compared to BCR::ABL1‐negative ALL cases. In contrast to prior

TAB L E 2 MRD outcomes of different genetic subtypes of ALLs at day 28.

Cases Available MRD data, % (n/N) MRD‐positivity, % (n/N) MRD‐negativity, % (n/N) Significance

B‐ALLs (n = 1021) 78.06 (797/1021) 17.57 (140/797) 82.43 (657/797) —

BCR::ABL1‐negative ALLs (n = 592) 79.56 (471/592) 18.04 (85/471) 81.96 (386/471) NS

BCR::ABL1‐positive ALLs (n = 184) 70.10 (129/184) 22.48 (29/129) 77.51 (100/129) **

ETV6::RUNX1‐positive ALLs (n = 51) 72.51 (37/51) 18.91 (7/37) 81.09 (30/37) NS

TCF3::PBX1‐positive ALLs (n = 39) 84.61 (33/39) 12.12 (4/33) 87.88 (29/33) NS

KMT2A::AFF1‐positive ALLs (n = 12) 83.33 (10/12) 0 (0/10) 100 (10/10) NS

BCR::ABL1‐like ALLs (n = 143) 81.81 (117/143) 21.36 (25/117) 78.63 (92/117) NS

Abbreviations: ALLs, acute lymphoblastic leukemias; MRD, minimal residual disease; NS, not significant.

**p < 0.01.

F I GUR E 5 Minimal residual disease outcomes of different genetic subtypes of B‐lineage acute lymphoblastic leukemias.
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studies, there was no difference observed in the MRD‐positivity of

patients with BCR::ABL1‐like ALL compared to BCR::ABL1‐negative

ALL cases.

DISCUSSION

The genetic landscape of ALL is highly diverse due to the presence of

>30 fusions identified so far.1 In the present study, we observed a

higher frequency of 18% BCR::ABL1 fusion, followed by 4.9% ETV6::

RUNX1 fusion, 3.8% TCF3::PBX1 fusion, 1.2% KMT2A::AFF1 fusion,

and 26.67% BCR::ABL1‐like ALLs of all B‐ALL patients. The authors

from high‐income and low‐income countries reported the recurrent

genetic abnormalities (RGA) frequencies including 0.6%–35% BCR::

ABL1‐positive ALLs, 0.8%–30.6% ETV6::RUNX1, 0.8%–6.2% TCF3::

PBX1, 0.5%–19% KMT2A‐AFF1, and 10%–33.1% BCR::ABL1‐like ALL

cases.6,7,12‐15,17,18,20,28,31,32,34,37,41,49‐61 The overall frequencies of

RGAs and BCR::ABL1‐like ALL cases reported in the literature from

low‐income and high‐income countries among B‐ALL patients (from

India as well as other countries) are summarized in Table 3. We also

studied aberrant myeloid marker expression frequencies in B‐ALL

patient subgroups. Overall, we observed the expression of CD13 in

21.8% of the B‐ALL patients, CD33 in 19.7% of the B‐ALL patients,

and CD117 in 4.7% of the B‐ALL patients. The authors from high‐
income and low‐income countries reported the aberrant expression

of myeloid marker expression including 10.5%–54.5% CD13, 2.6%–

89% CD33, and 0%–26.2% CD117.38,39,60,62–75 These differences in

frequencies of expression of various myeloid markers might be

attributed to the inherent genetic differences among ethnic sub-

populations, technical factors such as lack of uniformity in using

TAB L E 3 Frequencies of recurrent genetic abnormalities and BCR::ABL1‐like ALLs in B‐ALL patients from low‐income and high‐income
countries.

Publication (country of origin)
No. of B‐ALL
patients

t(9;22) (BCR::
ABL1), %

t(12;21) (ETV6::
RUNX1), %

t(1:19) (TCF3::
PBX1), %

t(4:11) (KM2TA::
AFF1), %

BCR::ABL1‐like
B‐ALL, %

Mancini 2004 (Italy)57 325 31.3 NR 2.1 7.3 NR

Moorman 2007 (US)58 1373 19 NR 3 7 NR

Den Boer 2009 (Dutch)17 107 1 22 2 4 15

Bhatia 2012 (India)41 95 13.6 11.6 2.1 3.1 NR

Chen 2012 (China)59 1346 16.2 10.87 3.05 3.05 NR

Roberts 2014 (US)6 1725 6.3 11 6.2 5.3 15.3

Chopra 2015 (India)50 271 15.1 5.9 5.5 1.1 NR

Fasan 2015 (Germany)32 132 NR NR NR NR 10

Den Boer 2015 (Dutch)18 127 33 NR 2.36 11 17

Jain 2017 (US)12 148 31 NR NR 9.5 33.1

Herold 2017 (Germany)14 207 35 1 1 19 13

Heatley 2017 (Australia)20 245 3.2 30.61 NR NR 11.7

Reshmi 2017 (US)15 1389 3.3 0.8 NR NR 24.6

Roberts 2017 (US)13 798 23.2 1 2.9 15.4 24.3

Chen 2018 (China)51 2479 10.25 7.54 4.7 1.41 NR

Roberts 2018 (US)31 1023 0.6 6 NR NR 20.1

Chiaretti 2018 (Italy)27 142 NR NR NR NR 19.7

Tsaur 2018 (Russia)34 147 6.8 15.6 3.4 NR 10.88

Gupta 2019 (India)52 273 8.1 5.5 NR NR NR

Park 2020 (Korea)56 637 5.3 2.35 0.8 0.5 NR

Shen 2021 (China)55 291 3.1 20.4 4.5 5 NR

Chiaretti 2021 (Italy)37 88 NR NR NR NR 31.8

Chen 2021 (China)54 1000 13.5 4.3 3.0 2.5 NR

Sharma 2022 (India)39 595 21 10.6 4.2 3 11.4

Present study 2023 (India) 1021 18 4.9 3.8 1.2 26.67

Abbreviations: ALL, acute lymphoblastic leukemia; B‐ALL, B‐lineage ALL; NR, Not Reported; US, United States.
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monoclonal antibody clone type, and differences in flow cytometry

methodology, processing, and data analysis.74,76 Table 4 compares

the reported frequencies of myeloid marker expression in B‐ALL

patients. Among genetic subgroups, there were some exciting ob-

servations encountered in our study. We found a statistically signif-

icant difference in the expression of CD13 and CD33 among the

BCR::ABL1‐positive (29.8% and 30.9%) and ETV6::RUNX1‐positive

(39.2% and 35.3%) B‐ALL patients. Both subgroups expressed higher

frequencies of these myeloid markers compared to other B‐ALL

subtypes, with a male predominance and significantly higher WBC.

The published literature has also highlighted an increased CD13 and

CD33 expression prevalence in BCR::ABL1‐positive (10%–42.5% and

20%–36.3%, respectively)38,77 and ETV6::RUNX1‐positive B‐ALLs

(73.3% and 46.6%, respectively).38,52 At least one of these two

myeloid markers has been found to be expressed in 95% and 91% of

BCR::ABL1‐positive B‐ALLs and ETV6::RUNX1‐positive B‐ALLs,

respectively.74

Logistic regression modeling using CD markers as predictors of

B‐ALL genetic subsets revealed remarkable findings. Increased cross‐
lineage myeloid marker expression (such as CD33) in BCR::ABL1‐
positive B‐ALL is very well documented,78 and 100% positivity for

CD34 in BCR::ABL1‐positive B‐ALLs has been reported in published

studies52 along with high CD20 expression79 and a low frequency of

CD38 and CD117 in this subtype. However, algorithms incorporating

the above CD markers as a predictive strategy to identify the mo-

lecular group are lacking. For the BCR::ABL1‐like ALL cases, CD36

expression strongly predicts this ALL subtype, displaying the largest

regression coefficient value. This is intriguing, because studies have

observed patients with BCR::ABL1‐like genetic alterations with CD36

positivity and inferior outcomes in such patients.80 KM2TA::AFF1‐
positive B‐ALLs were characterized as a distinct high‐risk group with

frequent CD10 negativity on immunophenotyping,81–83 also

confirmed by our own logistic regression analysis. CD20 and CD34

proved strong negative predictors for TCF3::PBX1‐positive B‐ALL, as

described previously.74,83

Our study found lymphadenopathy in BCR::ABL1‐like and ETV6::

RUNX1‐positive ALLs was statistically significant (p < .05) compared

to BCR::ABL1‐negative ALLs. Jaime‐Perez et al.84 showed that orga-

nomegaly at diagnosis was a significant predictor for relapse in ALL

patients. Validation in a larger cohort of ALL patients of Indian

ethnicity will be required to assess lymphadenopathy in high‐risk
ALLs as a significant predictor of BCR::ABL1‐like ALL cases.

MRD at EOI is the strongest predictor of risk behavior as well as

risk stratification in B‐ALL patients.85,86 MRD response differs across

various genetic subtypes of ALLs, indicating that the genetics of

multiple subtypes of ALLs play a significant role in the treatment

outcomes.85,86 MRD positivity translates into poor clinical outcomes

and a high risk of disease relapse.87–93 We studied the correlation

between the genetic subtypes of B‐ALL and disease outcome in MRD

status at the EOI chemotherapy. B‐ALL patients having TCF3::PBX1

and ETV6::RUNX1 have favorable outcomes compared to other high‐
risk genetic subtypes of ALLs.94 Indeed, our study found low MRD

positivity in these two subtypes. Meanwhile, we found that the flow

cytometric MRD positivity at the EOI was significantly higher in the

TAB L E 4 Comparison of expression of myeloid‐associated markers in B‐ALLs reported from India and other countries.

Publication (country of origin) No. of patients CD13, % CD33, % CD117, %

Present study 2022 (India) 1021 21.8 19.7 4.7

Santos 2022 (Brazil)62 277 21 11 0

Gupta 2022 (India)38 986 20.58 18.66 3.34

Ahuja 2022 (India)75 150 41.9 23.3 18.6

Hajra 2021 (India)63 244 10.5 52.6 5.3

Sivakumar and Basu 2021 (India)65 75 22.2 77.7 0

Gupta 2021 (India)64 100 50 2.6 5.3

Rezaei 2020 (Iran)66 89 5.8 2.9 1.74

Salem 2012 (Egypt)70 164 7.9 10.5 0

Sharma 2016 (India)39 303 32.9 34.5 26.2

Jalal 2016 (Iran)68 242 49.8 35.7 2.5

Sharma 2015 (India)67 100 15 10 54

Mazher 2013 (Pakistan)69 50 20 15 0

Seegmiller 2009 (US)74 200 54.5 43 1

Vitale 2007 (Italy)71 377 25 23 0

Suggs 2007 (US)72 71 53 89 5

Supriyadi 2006 (Indonesia)73 239 21 10 4

Abbreviations: B‐ALL, B‐lineage acute lymphoblastic leukemia; CD, cluster of differentiation; US, United States.
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BCR::ABL1‐positive subgroup (p < .05) and BCR::ABL1‐like positive

subgroup compared to others. A number of studies have demon-

strated that the identification of BCR::ABL1‐like and BCR::ABL1‐fusion

in B‐ALL confers a high‐risk status and poorer prognosis and/or

overall survival compared with BCR::ABL1‐negative B‐ALLs.1,6,12–

15,31,37,95–98 The increased frequency of MRD positivity in the BCR::

ABL1‐like ALL cases reflects the aggressive clinical behavior of this

subtype. This concurs with recently published works citing high rates

of induction failure or MRD positivity in BCR::ABL1‐like B‐ALLs.6,53,99

Novel therapies and personalized treatment regimens need to be

incorporated to improve the treatment outcomes of newly incorpo-

rated entities.

We have characterized four RGFs and BCR::ABL1‐like ALL

signature in patients of Indian ethnicity for the first time. However,

the authors from high‐income countries reported >30 different ge-

netic subtypes in the B‐ALL genetic landscape. Thus, a main limitation

of our research study cohort involves a lack of further subclassifi-

cation of BCR::ABL1‐negative ALL cases (n = 592) due to limited well‐
standardized multiplex RT‐PCR assay. To overcome this, with

ongoing B‐ALL research in our center, we are actively screening the

newer incorporated genetic subtypes of ALLs using RNA sequencing

at baseline diagnosis. We instead employed the recently published

PHi‐RACE classifier to detect BCR::ABL1‐like ALL cases at baseline.

We have validated the PHi‐RACE classifier in an independent B‐ALL

cohort (n = 108) that we recently published.100

In conclusion, our research study is a novel attempt to elucidate

the clinical, hematological FCM‐IP with aberrant myeloid‐associated

markers and MRD outcomes of prognostic significant genetic sub-

types of ALLs. BCR::ABL1‐positive and BCR::ABL1‐like ALLs were

considerably older at baseline presentation and had male prepon-

derance and ETV6::RUNX1‐positive ALLs were significantly younger

at presentation (p < .05). Interestingly, we observed that myeloid‐
associated markers CD13 and CD33 were statistically significant in

BCR::ABL1‐positive and ETV6::RUNX1‐positive ALLs (p < .05). This is

the first extensive report on the characterization of prognostic sig-

nificant genetic subtypes and MRD outcomes of ALLs in patients

from India. Evaluating hematological, FCM‐IP, and clinical symptoms

at diagnosis are useful for making alternate curative decisions in

various subtypes of ALLs.
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